Lab 5 Practice

October 15, 2013

For both parts below, set $f(x) = x^4 - 11x^3 + 8x^2 + 22x - 20$. Plot this function for $x \in [0, 2]$. Note that the right-most root of this plot is at $x = \sqrt{2}$.

- 1. Use the Bisection Method to find, up to two decimal places, the rightmost root of f(x) on the plot you just made. The bisection method is:
 - Start with an interval [a, b] with f(a) and f(b) having opposite signs.
 - Determine *m* the midpoint of this interval.
 - If f(a) and f(m) have different signs, set b = m. Otherwise, set a = m.
 - Repeat this process starting with the second step and continue until the length of the interval [a, b] is small.

Starting with a = 1.3 and b = 2 will give good results.

- 2. Do the same thing with Newton's Method, this time up to 8 decimal places. Newton's Method is
 - Start with an initial guess near the root, x_0 .
 - Use the formula $x_1 = x_0 f(x_0)/f'(x_0)$ to get your next guess.
 - Continue this process until $f(x_n)$ is close to zero.

Starting with $x_0 = 2$ should give good results.